Properties of the Real Numbers

I ne following are the properties of addition and multiplication if x, y , and z are real numbers.		
	Addition	Multiplication
Commutative	x + y = y + x	$x \cdot y = y \cdot x$
Associative	(x+y)+z=x+(y+z)	$(x \cdot y) \cdot z = x \cdot (y \cdot z)$
Identity	x + 0 = x	$x \cdot 1 = x$
Inverse	There is a unique number $-x$ such that	If $x \neq 0$, there is a unique number $\frac{1}{x}$ such that
	x + (-x) = 0	$x \cdot \frac{1}{x} = 1$

The following are the properties of addition and multiplication if x = y and z are real numbers:

Distributive	$x \cdot (y+z) = x \cdot y + x \cdot z$
Multiplication by zero	$x \cdot 0 = 0$

Commutative Property: When adding or multiplying *two* numbers, the order of the numbers can be reversed without changing the result.

Addition: 3+5=5+3 now check! 3+5= and 5+3=*Multiplication:* $4 \cdot 7 = 7 \cdot 4$ now check! $4 \cdot 7 =$ and $7 \cdot 4 =$

Associative: When adding or multiplying three or more numbers, the result does not change if the numbers are grouped differently.

Addition: (1+2)+3=1+(2+3) now check! $(1+2)+3=(_)+3=_$ and $1+(2+3)=1+(_)=_$ *Multiplication:* $(1 \cdot 2) \cdot 3 = 1 \cdot (2 \cdot 3)$ now check! $(1\cdot 2)\cdot 3 = (_)\cdot 3 = _$ and $1\cdot (2\cdot 3) = 1\cdot (_) = _$

Identity: Addition and multiplication each have an *identity element*. This is a special number that does not change the value of other numbers when combined. For addition this number is zero, and for multiplication the number is one.

Addition: 5+0=*Multiplication:* $5 \cdot 1 =$ ____

Inverse: Addition and multiplication each have a unique *inverse element* for each real number (except zero for multiplication!) A number combined with its *inverse* gives the *identity element*.

Addition: 5+(-5)=____ Multiplication: $5 \cdot \frac{1}{5} =$ ____

Distributive: We say that multiplication *distributes* over addition of real numbers.

 $2 \cdot (1+3) = 2 \cdot 1 + 2 \cdot 3$ now check! $2 \cdot (1+3) = 2 \cdot (___) = _$ and $2 \cdot 1 + 2 \cdot 3 = __+ _= _$ Addition does not distribute over multiplication! $2+(1\cdot3)\neq(2+1)\cdot(2+3)$ because $2+(1\cdot3)=6$ and $(2+1)\cdot(2+3)=15$

Multiplication by zero: Any real number multiplied by zero is equal to zero.

 $5 \cdot 0 =$

SBCC Mathematics 2011