Title: Solving Quadratic Equations using Square Roots
Class: Math 107
Author: Jason Miner
Instructions to tutor: Read instructions and follow all steps for each problem exactly as given.
Keywords/Tags: Quadratic, equation, square root, solution

Solving Quadratic Equations using Square Roots

Purpose:

This is intended to refresh your knowledge about solving quadratic equations using square roots.

Recall that a **quadratic equation** is an equation that can be written in the form $ax^2 + bx + c = 0$, with $a \neq 0$. For example, $3x^2 + 4x - 7 = 0$, $6 - x^2 = 2x$, and x(x+6) = 14 are all quadratic equations. Note that the second two equations would require a couple algebraic steps to be put into the form shown above.

We can solve $x^2 - 9 = 0$ by factoring; (x - 3)(x + 3) = 0 and so x = -3, 3.

In certain situations, namely when a quadratic equation does not appear to have an x term, we can solve the quadratic equation by isolating the squared term and taking the square root of both sides.

Example: Solve $x^2 - 9 = 0$ using square roots.

This time, we isolate the squared term. So $x^2 - 9 = 0 \implies x^2 = 9$.

Now we will take the square root of each side to solve for x.

 $x^2 - 9 = 0 \Rightarrow x^2 = 9 \Rightarrow \sqrt{x^2} = \pm \sqrt{9} \Rightarrow x = \pm 3$

You should note the inclusion of the \pm sign on the right hand side of the equation, after the square root is applied. This is because when you square -3 or 3, you obtain 9 for the result.

Here is a summary of this method.

Solving Quadratic Equations using the Root Method:

- 1. Isolate the squared term.
- 2. Take the square root of both sides; remember to use \pm .
- 3. Solve.

Example: Now it's your turn. Solve $5t^2 - 125 = 0$.

First you need to isolate the squared term:

Do you now have $t^2 = 25$? If not, first add 125 to each side and then divide both sides by 5.

Now take the square root of each side.

Did you obtain $t = \pm 5$? If you only got one solution, what can you do to correct this?

This method will work with more complicated squared terms as well.

Example: Solve $(x + 4)^2 = 169$.

As the squared term is already isolated, we are ready to take the square root of each side.

$$(x+4)^2 = 169 \Rightarrow \sqrt{(x+4)^2} = \pm\sqrt{169} \Rightarrow x+4 = \pm 13$$

Now we can solve for x by subtracting 4 from each side: $x = -4 \pm 13$

So we obtain the solutions x = 9 and x = -17.

Try the following on your own.

1. Solve each equation using square roots.

(a)
$$x^2 - 81 = 0$$
 (b) $4a^2 - 13 = 3$

(c)
$$(2y-3)^2 - 25 = 0$$
 (d) $(x+1)^2 - 8 = 0$

Check your answers – If you did not get these, consult a tutor for help. 1. (a) $x = \pm 9$ (b) $a = \pm 2$ (c) y = -1, 4 (d) $x = -1 \pm 2\sqrt{2}$