Comparison Test Notes for Improper Integrals

Suppose we have an improper integral of the form:

$$\int_{a}^{b} f(x) dx \text{ where } f(x) \ge 0 \text{ for } a \le x \le b$$

We can use a comparison test to check for convergence or divergence by finding a function that is always larger or smaller than f(x) when $a \le x \le b$

Testing for Divergence:

Find a function g(x) so that

$$0 \le g(x) \le f(x)$$
 when $a \le x \le b$
and $\int_{a}^{b} g(x) dx$ is divergent

Since $\int_{a}^{b} g(x) dx$ is divergent, the <u>larger</u> integral $\int_{a}^{b} f(x) dx$ must also diverge.

Testing for Convergence:

Find a function g(x) so that

$$f(x) \le g(x)$$
 when $a \le x \le b$
and $\int_{a}^{b} g(x) dx$ is convergent

Since $\int_{a}^{b} g(x) dx$ is convergent, the <u>smaller</u> integral $\int_{a}^{b} f(x) dx$ must also converge.

Common Functions to Test for Convergence or Divergence

 $\int_{a}^{b} \frac{1}{x^{n}} dx$ is easy to integrate, so it's very useful in comparison tests. Convergence and divergence depend on the values we use for *a*, *b* and *n*.

If n = 1, then

$$\int_{a}^{b} \frac{1}{x} dx = \ln(x) \Big|_{a}^{b}$$

If $n \neq 1$, then:

$$\int_{a}^{b} \frac{1}{x^{n}} dx = \frac{-1}{(n-1)x^{n-1}} \bigg|_{a}^{b}$$

 $\int_{a}^{b} \frac{1}{e^{nx}} dx$ is also useful, evaluate the integral yourself to confirm the results in the table.

	$\int_{0}^{b} \frac{1}{x^{n}} dx$	$\int_{a}^{\infty} \frac{1}{x^{n}} dx$
<i>n</i> = 1	Divergent	Divergent
<i>n</i> > 1	Divergent	Convergent
<i>n</i> < 1	Convergent	Divergent

	$\int_{-\infty}^{b} \frac{1}{e^{nx}} dx$	$\int_{a}^{\infty} \frac{1}{e^{nx}} dx$
<i>n</i> < 0	Convergent	Divergent
n > 0	Divergent	Convergent