Statistics Terminology for Hypothesis Testing

 α = probability of a type I error = significance level

 α is measured on the H_{\circ} distribution (or frequency plot) from the critical value (the decision rule cutoff value) in the direction of extreme (see the other side of this page).

 β = probability of a type II error

 β is measured on the H₁ distribution (or frequency plot) from the critical value (the decision rule cutoff value) in the opposite direction from the direction of extreme (see the other side of this page).

p-value = probability of the given observation or one more extreme, *assuming* H_o *is true.* p-value is measured on the H_o distribution (or frequency plot) from the observed value in the direction of extreme. A larger p-value supports H_o ; a smaller p-value supports H_i (as compared with α). (Remember that you must have made an observation – taken a sample, etc. – before you can have a p-value.)

Type I error means rejecting H_{\circ} (i.e., accepting H_{ι}) when H_{\circ} is actually true. Type II error means failing to reject H_{\circ} (i.e., accepting H_{\circ}) when H_{\circ} is actually false.

		reality	
		H _o is true	H ₁ is true
your conclusion	Accept H_{o} ("fail to reject H_{o} ")	No error	Type II error
	Accept H ₁ ("reject H _o ")	Type I error	No error

The horizontal scales of the H_{\circ} and H_{I} distributions must align.

p-value is measured similarly to α , but starting from the observation instead of from the decision rule. In the twosided case, you must also include the equivalently extreme value on the opposite side from the observation (or just double the p-value from one side).